×
image

Hexadecimal to Binary Converter

Easily convert hexadecimal numbers to binary by entering the hexadecimal below.
This tool helps convert hexadecimal values into their binary equivalents, providing valuable insights for programming, data conversion, and digital systems analysis.


powered by Evilletec
Binary Result:

Calculation steps

×

Learn how to convert hexadecimal to binary

Watch video

Hexadecimal to Binary Conversion

Hexadecimal number is a number expressed in the base 16 numeral system. Hexadecimal number's digits have 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Each digit of a hexadecimal number counts a power of 16.

Hexadecimal number example:

62C16 = 6×162 + 2×161 + 12×160 = 158010

Binary number is a number expressed in the base 2 numeral system. Binary number's digits have 2 symbols: zero (0) and one (1). Each digit of a binary number counts a power of 2.

Binary number example:

11012 = 1×23 + 1×22 + 0×21 + 1×20 = 1310

How to Convert Hexadecimal to Binary

Convert every hex digit (start lowest digit) to 4 binary digits, with this table:

Example

Understanding Hexadecimal-to-Binary Conversion

Hexadecimal-to-binary conversion involves converting hexadecimal numbers (base 16) into their corresponding binary representations (base 2). Hexadecimal uses digits 0-9 and letters A-F to represent values from 0 to 15, while binary uses only 0 and 1.

The general approach to converting hexadecimal numbers to binary includes:

  • Write down the hexadecimal number.
  • Convert each hexadecimal digit into its 4-bit binary equivalent.
  • Combine the binary groups to get the final binary representation.

Steps for Hexadecimal-to-Binary Conversion

Step 1: Write down the hexadecimal number.

Step 2: Convert each hexadecimal digit into its 4-bit binary equivalent using a conversion table.

Step 3: Combine all binary values to obtain the complete binary number.

Example: Converting Hexadecimal to Binary

Convert \( 2F \) to binary:

  • Step 1: Write the hexadecimal number \( 2F \).
  • Step 2: Convert each digit:
    • \( 2 \) → \( 0010 \)
    • \( F \) → \( 1111 \)
  • Step 3: Combine the binary values: \( 00101111 \).
  • Final binary result: \( 00101111 \).

Conversion Table for Quick Reference

Here is a quick reference for hexadecimal digits and their binary equivalents:

  • 0 → 0000
  • 1 → 0001
  • 2 → 0010
  • 3 → 0011
  • 4 → 0100
  • 5 → 0101
  • 6 → 0110
  • 7 → 0111
  • 8 → 1000
  • 9 → 1001
  • A → 1010
  • B → 1011
  • C → 1100
  • D → 1101
  • E → 1110
  • F → 1111

Applications of Hexadecimal-to-Binary Conversion

Hexadecimal-to-binary conversion is commonly used in:

  • Digital systems and computing, where hexadecimal provides a compact way of representing binary numbers.
  • Programming, especially in debugging and working with low-level machine code.
  • Representing memory addresses, color codes, and other binary data in an easier-to-read format.

Practice Problem

Convert \( 3A \) to binary:

  • Solution:
    • \( 3 \) → \( 0011 \)
    • \( A \) → \( 1010 \)
  • Combine the binary values: \( 00111010 \).
  • Final binary result: \( 00111010 \).
Hexadecimal-to-Binary Conversion Examples Table
Problem Type Description Steps to Solve Example
Basic Conversion Converting a hexadecimal digit to its binary equivalent.
  • Write down the hexadecimal number.
  • Convert each hexadecimal digit to its 4-bit binary equivalent using a conversion table.
  • Combine the binary equivalents to form the complete binary number.
For 2F:
  • ‘2’ in binary: 0010.
  • ‘F’ in binary: 1111.
  • Combine: 00101111.
  • Binary: 00101111.
Handling Larger Numbers Converting hexadecimal numbers with more digits to binary.
  • Follow the same method of converting each hexadecimal digit to its 4-bit binary equivalent.
  • Combine the binary values in the same order as the hexadecimal digits.
For 3A7:
  • ‘3’ in binary: 0011.
  • ‘A’ in binary: 1010.
  • ‘7’ in binary: 0111.
  • Combine: 001110100111.
  • Binary: 001110100111.
Verifying Conversion Checking the accuracy of hexadecimal-to-binary conversion.
  • Convert the binary number back to hexadecimal.
  • Ensure the hexadecimal result matches the original number.
For 00101111 (binary for 2F):
  • Group the binary into 4-bit segments: 0010, 1111.
  • Convert each group back to hexadecimal: 2, F.
  • Hexadecimal: 2F, matches the original input.
Handling Special Cases Converting special hexadecimal numbers (e.g., letters A-F).
  • Use a hexadecimal-to-binary conversion table to quickly convert letters to their binary equivalents.
For FE:
  • ‘F’ in binary: 1111.
  • ‘E’ in binary: 1110.
  • Combine: 11111110.
  • Binary: 11111110.
Applications Understanding where hexadecimal-to-binary conversion is used.
  • Hexadecimal simplifies binary representation in computing systems.
  • Commonly used in programming, debugging, memory addressing, and color codes.
Example: Converting hexadecimal color codes (e.g., #FF5733) into binary for digital display.

Thank you for choosing us

Please rate your user experience

Discover more:

Evilletec

Thank you for visiting our website, if you in happy with with our service please consider following and supporting us on social media and don't forget to visit our official website.